Abstract

We study the kinetics of aggregation of a two site model of interacting spherical molecules. A given site on one molecule can interact with one or more sites on other neighboring molecules. The sites represent the result of a simple coarse graining of putative amino acid residues or two specifically designed sites on a colloidal particle. We study the kinetics and equilibrium morphology for a fixed angle between the two sites, for several angles between 30° and 150°. In the model, the sites interact via an attractive Asakura-Oosawa potential and the molecules have the usual hard sphere repulsion interaction. We find a transition from a micelle-like morphology at small angles to a rod-like morphology at intermediate angles and to a gel-like structure at values of the angle greater than about ninety degrees. However, at 150 degrees, after a long induction time during which there is no aggregation, we observe a nucleation and growth process that leads to a final spherical-like aggregate. Our results show that this angle is a control parameter for the kinetics and equilibrium properties of the system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.