Abstract

Adiabatic temperature rise has been recorded as a function of polymerization time to investigate an adiabatic copolymerization kinetics of ϵ-caprolactam (CL) in the presence of several activators, considering different initial copolymerization temperatures ranging from 130 to 160°C. The copolymerization of CL and PEG-diamine has been performed using activators such as tolylene dicarbamoyl dicaprolactam (TDC), hexamethylene dicarbamoyl dicaprolactam (HDC), and cyclohexyl carbamoyl caprolactam (CCC), and sodium caprolactamate as a catalyst. The effect of PEG-diamine on the overall rate of polymerization of CL has been studied by fitting the experimental temperature rise with a new polymerization kinetic equation involving the polymerization exotherm, polymerization-induced crystallization exotherm, and the heat loss due to nonideal adiabatic condition in the experimental situation. Like homopolymerization, the net copolymerization rate is influenced by the variation of activator types in the initiation step. The temperature rise due to polymerization-induced crystallization in copolymerization is drastically decreased with the increasing initial polymerization temperature in the course of polymerization. The high molecular weight and large polydispersity index of copolymers using bifunctional activators indicate that the Claisen type condensation can occur in the course of polymerization processes. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 66: 1195–1207, 1997

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.