Abstract

The effects of the calcium channel blocker D-600 on the cation channels activated by acetylcholine (ACh) was studied in voltage-clamped Aplysia neurons by voltage-jump relaxation analysis. D-600 blocked the steady-state ACh current in a highly voltage-dependent manner, the degree of antagonism increasing with membrane hyperpolarization. In the presence of D-600 the current relaxations following hyperpolarizing command steps became biphasic. The time constants of ACh-induced current relaxations (tau f), which approximate the mean channel lifetime, were reduced in a voltage-dependent manner, the degree of reduction of tau f increasing with increasing membrane potential. In addition to the acceleration of tau f, a slow, inverse kinetic component (tau s) of the relaxation appeared in the presence of D-600. The rate of this inverse kinetic component was accelerated either by increasing the agonist or antagonist dose or by increasing the membrane potential. These results suggest that D-600 acts to antagonize the acetylcholine response through a blockade of the open state of the transmitter-activated cation channel. Possible kinetic schemes for this interaction are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call