Abstract

We present a study, within a mean-field approach, of the kinetics of the mixed spin-1 and spin-3/2 Ising model Hamiltonian with bilinear and biquadratic nearest-neighbor exchange interactions and a single-ion potential or crystal-field interaction in the presence of a time-dependent oscillating external magnetic field. We employ the Glauber transition rates to construct the mean-field dynamical equations. We investigate the time dependence of average magnetizations and the quadrupole moments, and the thermal behavior of the dynamic order parameters. From these studies, we obtain the dynamic phase transition (DPT) points and construct the phase diagrams in three different planes. Phase diagrams contain disordered (d) , ferrimagnetic (i) , the antiquadrupolar or staggered (a) phases, and four coexistence or mixed phase regions, namely, the i+d , i+a , i+a+d , and a+d , that strongly depend on interaction parameters. The system also exhibits the dynamic tricritical behavior in most cases, the reentrant behavior in few cases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.