Abstract

3-[(123)I]Iodo-l-alpha-methyltyrosine ((123)I-IMT) is used for the diagnosis and monitoring of brain tumours by means of single-photon emission tomography (SPET). To date, little has been known about the system for the transport of (123)I-IMT into brain tumour cells. It is assumed that (123)I-IMT is transported by a specific carrier for large, neutral amino acids (L-system). In this study, rat C6 glioma cells were used to characterize the uptake system of (123)I-IMT and to investigate its precise kinetics. The time course of (123)I-IMT uptake into the cells was examined for a range of 1-60 min. (123)I-IMT uptake rates with varying concentrations of (123)I-IMT (2. 5-50 microM) in the medium were quantified to assess the kinetic parameters of (123)I-IMT transport. Furthermore, competition of (123)I-IMT with other amino acids was investigated to identify the distinct transport systems involved in (123)I-IMT uptake. (123)I-IMT uptake into C6 glioma cells was linear for approximately 10 min and reached a steady-state level within 30 min. The analysis of the rate of uptake of (123)I-IMT at different concentrations was concordant with the predominance of a single uptake system. The apparent Michaelis constant (K(m)) of (123)I-IMT was 26.2+/-1.9 microM, and the maximum transport velocity (V(max)) was 35.4+/-1.7 nmol/mg protein per 10 min. 77%+/-10% of (123)I-IMT transport was sodium independent and 23%+/-3% was sodium dependent. Competitive inhibition of (123)I-IMT uptake by 2-aminobicyclo[2.2. 1]heptane-2-carboxylic acid, alpha-(methylamino)isobutyric acid and naturally occurring amino acids revealed a major (123)I-IMT transport via the sodium-independent system L (72%) and a minor uptake via the sodium-dependent system B(0,+) (17%). Our results show that (123)I-IMT transport into C6 glioma cells is principally mediated by the L-system and to a minor extent by the B(0,+)-system. The kinetic parameters of (123)I-IMT uptake are in the range of those of naturally occurring amino acids.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.