Abstract

Radionuclide concentration analysis of total moss bodies often gave relatively different results than a separate analysis of each different morphological part of the same sample. The dynamics of the transfer of metals by dust uplifted from the soil and another approach, based on the diffusion of the two radionuclides to the moss, have been analyzed. In the proposed model, short- and long-term approaches have been applied. Each part of a moss’s profile can show different radionuclides accumulation ability, including both 210Pb and 210Po isotopes. A first-order kinetic model has been used for 210Po and 210Pb transport between three body components of mosses. This mathematical approach has been applied for 210Po activity concentration in the air estimation. For relatively clean deep forest region, calculated concentrations were from 17.2 to 43.8 μBqm−3, while for urban air concentrations were higher from 49.1 to 104.9 μBqm−3.

Highlights

  • 210Pb and 210Po are natural radionuclides present in the atmosphere in result of 222Rn exhalation from the ground

  • The levels of 210Po and 210Pb activity concentration in the various components of the moss’s body depend on several factors, such as the initial content of both radionuclides in the local environment and their activity ratios in the air and soil, along with the total accumulation time, which plays a significant role in the internal transport of metals (Koz and Cevik 2014; Sert et al 2011; Uğur et al 2003, 2004). 210Pb activity concentration distributions in moss body profiles collected in various environments seemed to be more stable than 210Po concentrations

  • If there is no rain during that time, which mechanically removes the heavy metals from the plant, Eq 9 that it can be simplified to the form shown below

Read more

Summary

Introduction

Both are widely used as markers of various atmospheric processes, and because of the disequilibrium between their activity, concentration in fresh aerosols are often use for aerosol residence time calculation method (Persson and Holm 2011; Papastefanou 2006; Długosz-Lisiecka and Bem 2012). Mosses are common biomarkers mainly used for the quantitative determination of concentrations most spread pollutions (heavy metals, radionuclides) of the atmosphere. Because of their good adsorption capacity, the use of mosses as bioindicators of atmospheric metal or radionuclides deposition has been widely accepted (Agnan et al 2015; Dołęgowska and Migaszewski 2013; Koz and Cevik 2014; Basile et al 2001; Boquete et al 2014).

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call