Abstract
The hydroformylation of 1-dodecene on a rhodium-biphephos catalyst complex exploiting a thermomorphic multicomponent solvent system was studied experimentally in a batch reactor in order to describe the kinetics of the main and the most relevant side reactions. The formation of the active catalyst was studied in preliminary experiments. Based on a postulated catalytic cycle mechanistic kinetic models were developed considering isomerization, hydrogenation and hydroformylation reactions as well as the formation of not catalytically active Rh-species. The complex overall network was decomposed to support parameter estimation. The isomerization of 1-dodecene, the hydrogenations of iso- and 1-dodecene and the hydroformylations of iso-dodecene and 1-dodecene were investigated as a function of temperature, total pressure and partial pressures of carbon monoxide and hydrogen, respectively. These four sub-networks of increasing size and the total network were analyzed sequentially in order to identify kinetic models and to estimate the corresponding parameters applying model reduction techniques based on singular value decomposition combined with rank revealing QR factorization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.