Abstract
A laboratory study was conducted to evaluate phosphate removal from aqueous solutions by a CaAl-Cl layered double hydroxide (Cl-hydrocalumite). Cl-hydrocalumite was prepared by co-precipitation and was characterized by scanning electron microscopy equipped with energy-dispersive spectrometer (SEM-EDS), powder X-ray diffraction (PXRD), and Fourier transform infrared (FTIR). SEM demonstrated that a crystalline structure was synthesized and PXRD or FTIR spectra revealed that the structure was Cl-hydrocalumite. Adsorption experiments were performed as a function of contact time and initial phosphate concentration. Phosphate adsorption reached equilibrium within 10h, followed by a pseudo-second-order kinetic model with R2=0.999. The experimental data followed the Langmuir and Fedlich-Peterson isotherm models, and showed a maximum adsorption capacity of ~182.5mgg−1. The Freundlich constant n=3.18>1, represented a favorable phosphate adsorption process. SEM-EDS, PXRD, and FTIR analyses of P-hydrocalumite (after adsorption) were used to elucidate adsorption mechanisms. EDS results indicated that chloride was topotactic, exchanged by phosphate to generate P-hydrocalumite, and partial Cl-hydrocalumite was dissolved. The PXRD and FTIR spectra indicate that P-hydrocalumite was a mixture with a new precipitate, brushite. Phosphate adsorption by Cl-hydrocalumite was topotactic anion exchange combined with dissolution–precipitation. Cl-hydrocalumite was a cost-effective and excellent phosphate adsorbent.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.