Abstract
We report kinetics studies of H3O+(H2O)n=0-3 with isoprene (2-methyl-1,3-butadiene, C5H8) as a function of temperature (300-500 K) measured using a flowing afterglow-selected ion flow tube. Results are supported by density functional (DFT) calculations at the B3LYP/def2-TZVP level. H3O+ (n = 0) reacts with isoprene near the collision limit exclusively via proton transfer to form C5H9+. The first hydrate (n = 1) also reacts at the collision limit and only the proton transfer product is observed, although hydrated protonated isoprene may have been produced and dissociated thermally. Addition of a second water (n = 2) lowers the rate constant by about a factor of 10. The proton transfer of H3O+(H2O)2 to isoprene is endothermic, but transfer of the water ligands lowers the thermicity and the likely process occurring is H3O+(H2O)2 + C5H8 → C5H9+(H2O)2 + H2O, followed by thermal dissociation of C5H9+(H2O)2. Statistical modeling indicates the amount of reactivity is consistent with the process being slightly endothermic, as is indicated by the DFT calculations. This reactivity was obscured in past experiments due to the presence of water in the reaction zone. The third hydrate is observed not to react and helps explain the past results for n = 2, as n = 2 and 3 were in equilibrium in that flow tube experiment. Very little dependence on temperature was found for the three species that did react. Finally, the C5H9+ proton transfer product further reacted with isoprene to produce mainly C6H9+ along with a small amount of clustering.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.