Abstract

The kinetics and thermodynamics of the thermal inactivation of polyphenol oxidase (PPO) in an aqueous extract from mushroom Agaricus bisporus (J.E. Lange) Imbach was studied, using pyrocatechol as a substrate. Optimal conditions for enzymatic studies were determined to be pH 7.0 and 35-40 °C. The kinetics of PPO-catalyzed oxidation of pyrocatechol followed the Haldane model with an optimum substrate concentration of 20 mM. Thermal inactivation of PPO was examined in more detail between 50 and 73 °C and in relation to exposure time. Obtained monophasic kinetics were adequately described by a first-order model, with significant inactivation occurring with increasing temperature (less than 10% preserved activity after 6 min at 65 °C). Arrhenius plot determination and calculated thermodynamic parameters suggest that the PPO in aqueous extract from Agaricus bisporus mushroom is a structurally robust yet temperature-sensitive biocatalyst whose inactivation process is mainly entropy-driven.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call