Abstract

Four Zn2+–azamacrocyclic complexes were investigated for their ability to catalyze the hydrolysis of the toxic organophosphate (OP) pesticide diethyl paraoxon. Of the four complexes studied, Zn2+–1,5,9-triazacyclododecane (Zn2+–[12]aneN3) was found to be the most effective catalyst with a pseudo-first order reaction rate of k=6.08±0.23×10−4min−1. Using 31P nuclear magnetic resonance (NMR) spectroscopy, the two products diethyl phosphate (DEP) and ethyl (4-nitrophenyl) phosphate (E4NPP) were identified for both catalyzed and background hydrolysis of paraoxon. Reaction rate and selectivity for formation of the non-toxic DEP were observed to correlate with catalyst pKa. The rate of formation of toxic E4NPP, however, was independent of both the presence and nature of the catalyst. The potential roles of buffer concentration and product inhibition were also investigated. Background hydrolysis at elevated reaction temperatures (50°C) displayed no preference for DEP over that of E4NPP despite substantial differences between the characteristics (i.e., pKa values) of the two leaving groups (ethoxide vs. 4-nitrophenoxide anions). As with previous observations of these types of metal-catalyzed hydrolyses, we invoke the formation of a trigonal bipyramidal-like transition state involving a Zn-coordinated phosphate bond, with the leaving group at the apical position and the incoming HO− anion approaching from the opposite end. Kinetic rates for catalytic hydrolysis display an overwhelming propensity for DEP formation, and suggest the importance of steric restrictions on transition state structure, namely a concerted arrangement of the azamacrocycle in opposition to the bulky 4-nitrophenoxy group.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.