Abstract

Abstract Because of the high occupant density in aircraft, the surface chemistry of ozone and squalene, an important component of skin oil, was evaluated. A reaction probability of (45±14)×10−5 was determined for the reaction of squalene (2,6,10,15,19,23-hexamethyl-2,6,10,14,18,22-tetracosahexaene) with ozone (50 parts per billion (ppb)) on a glass plate surface using the Field and Laboratory Emission Cell (FLEC) Automation and Control System (FACS). To more clearly define part of squalene’s indoor environment degradation mechanism, gas-phase and surface-bound products of the squalene+O3 reaction were also investigated. Emitted products were captured in solution, derivatized with O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine (PFBHA), and analyzed by gas chromatography and ion trap mass spectroscopy. The identified squalene+O3 reaction products were: 6-methyl-5-hepten-2-one (6MHO, ((CH3)2CCH(CH2)2 C(O)CH3)), glyoxal (ethanedial, HC(O)C(O)H), 4-oxopentanal (4OPA, CH3C(O)CH2CH2 CH(O)), and 6,10-dimethylundeca-5,9-dien-2-one (geranyl acetone). The compound 5,9,13-trimethyltetradeca-4,8,12-trienal is proposed as the other major squalene+O3 reaction product. This compound was determined from mass spectrometry coupled with plausible squalene+O3 reaction mechanisms based on previously published volatile organic compound+O3 gas-phase reaction mechanisms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.