Abstract

We investigated the degradation of hexafluoropropylene oxide dimer acid (GenX) in water via VUV photolysis and VUV/sulfite reactions under nitrogen-saturated conditions. Approximately 35% and 90% of GenX were degraded in 3 h in the VUV photolysis and VUV/sulfite reaction. While GenX removal rate was highest at pH 6 in VUV photolysis, it increased under alkaline pHs, especially at pH 10, in VUV/sulfite reaction. Radical scavenging experiments showed that, while both eaq- and •H contributed to VUV photolysis, eaq- played a significant role and •OH had a negative effect during VUV/sulfite reaction. Two transformation products (TPs) (TFA and PFPrA) were identified in VUV photolysis, whereas five TPs (TFA, PFPrA, TP182, TP348, and TP366) were identified in VUV/sulfite reaction by LCMS/MS and LCQTOF/MS. Defluorination of GenX was observed with the defluorination efficiency after 6 h reaching 17% and 67% in the VUV photolysis and VUV/sulfite reactions, respectively. Degradation mechanism for GenX based on the identified TPs and the theoretical calculation confirmed the susceptibility of GenX to nucleophilic attack. The initial reactions for GenX decomposition were C–C and C–O bond cleavage in both reactions, whereas sulfonation followed by decarboxylation was observed only in the VUV/sulfite reaction. ECOSAR ecotoxicity simulation showed that the toxicities of the TPs were not as harmful as those of GenX.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.