Abstract

Kinetics of bacterial reduction of toxic hexavalent chromium (chromate: CrO(4) (2-)) was investigated using batch and fedbatch cultures of Enterobacter cloacae strain HO1. In fedbatch cultures, the CrO(4) (2-) feed was controlled on the basis of the rate of pH change. This control strategy has proven to be useful for avoiding toxic CrO(4) (2-) overload. A simple mathematical model was developed to describe the bacterial process of CrO(4) (2-) reduction. In this model, two types of bacterial cells were considered: induced, CrO(4) (2-)-resistant cells and uninduced, sensitive ones. Only resistant cells were assumed to be able to reduce CrO(4) (2-). These fundamental ideas were supported by the model predictions which well approximated all experimental data. In a simulation study, the model was also used to optimize fed-batch cultures, instead of lengthy and expensive laboratory experiments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call