Abstract

In this contribution, a series of N-heterocyclic compounds cooperated with ZnBr2 catalyst for chemical fixation of CO2 to cyclic carbonates was developed without utilization of additional organic solvents. It was found that the catalytic activity of N-heterocyclic compounds could be obviously enhanced in the presence of ZnBr2, and the N-methylimidazole (Mim)/ZnBr2 catalytic system was the most efficient among the catalysts employed. Under the optimum reaction conditions, 99% yield of propylene carbonate was achieved with TOF of 474 h–1, and the catalysts were also versatile for CO2 cycloaddition with less active epoxides such as styrene oxide and cyclohexene oxide. Furthermore, a possible synergistic catalytic mechanism was proposed. Moreover, the rate constants were determined as a function of reaction temperature in the range of 130–160 °C, the activation energy was determined to be 41.1 kJ·mol–1, and the kinetic equation on the synthesis of propylene carbonate catalyzed by Mim/ZnBr2 was also obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.