Abstract

In this paper, Phenol, 4-Chlorophenol (4-CP), 2,4-Dichlorophenol (2,4-DCP) and 2,4,6-Trichlorophenol (2,4,6-TCP) were selected as model pollutants to explore the oxidant mechanism by ferrate (Fe(VI)). The reactions between ferrate (1000 μM) and four phenolic compounds (100 μM) were conformed to the second-order reaction kinetics at pH 9.2, and the order of kobs followed as: k4-CP (129 M−1 s−1) > k2,4-DCP (96 M−1 s−1) > k2,4,6-TCP (44 M−1 s−1) > kPhenol (12 M−1 s−1). Meanwhile, the degradation rates of all four compounds by Fe(VI) increased with increased pH (3.1–9.2). A total of 14 degradation products were identified by Liquid chromatography-Time-of-Flight-Mass Spectrometry (LC-TOF-MS), and two pathways including hydroxylation of benzene ring and substitution of chlorine atom were proposed. Hydroxyl radicals, played a vital role during the degradation of phenolic compounds. Moreover, density functional theory calculations were used to explore the degradation mechanisms. The results showed that the hydroxyl radical was more favorable to substitute chlorine atom than hydrogen atom, and the substitution on ortho-position was more favorable than para-position for all four compounds. The findings of this study could greatly improve our understanding on the degradation mechanism of chlorophenol-like compounds by Fe(VI) for environmental remediation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call