Abstract

This project is concerned with the mechanism of reduction of both NO and N{sub 2}O by carbons. It was recognized some years ago that NO formed during fluidized bed coal combustion can be heterogeneously reduced in-situ by the carbonaceous solid intermediates of combustion. This has been recently supplemented by the knowledge that heterogeneous reaction with carbon can also play an important role in reducing emissions of N{sub 2}, but that the NO-carbon reactions might also contribute to formation of N{sub 2}. The precise role of carbon in N{sub 2} reduction and formation has yet to be established. Interest in the N{sub 2} and N{sub 2}O-char reactions has been significant in connection with both combustor modeling, as well as in design of post-combustion NO{sub x} control strategies. In our studies, a DuPont thermogravimetric analyzer (TGA) is used for the char reactivity studies. The temperature and mass are recorded as function of time, using a Macintosh computer and software for simultaneous apparatus control and data acquisition. Specific surface areas of char samples were determined by the N{sub 2} BET method at 77 K. A standard flow-type adsorption device (Quantasorb) was used for the measurements. Prior to surface area analysis, all samples weremore » outgassed in a flow of nitrogen at 573 K for 3 hours. The carbonaceous solids used were resin char, graphite, coconut char and a Wyodak coal char. As was noted in the last report, carbons derived from different original materials show quite similar behaviors, in terms of the trends, but there are significant differences in actual reaction rates. It was shown that the spread of the reaction rate data from different studies, when expressed on a mass of carbon reactant- or surface area-basis, was almost the same.« less

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.