Abstract
AbstractThe thermal decomposition reaction of acetone cyclic diperoxide (3,3,6,6‐tetramethyl‐1,2,4,5‐tetroxane, ACDP), in the temperature range of 130.0–166.0°C and initial concentrations range of 0.4–3.1 × 10−2 mol kg−1 has been studied in methyl t‐butyl ether solution. The thermolysis follows first‐order kinetic laws up to at least ca 60% ACDP conversion. Under the experimental conditions, the activation parameters of the initial step of the reaction (ΔH# = 33.6 ± 1.1 kcal mol−1; ΔS# = −4.1 ± 0.7 cal mol−1 K−1; ΔG# = 35.0 ± 1.1 kcal mol−1) and acetone, as the only organic product, support a stepwise reaction mechanism with the homolytic rupture of one of its peroxidic bond. Also, participation of solvent molecules in the reaction is postulated given an intermediate diradical, which further decomposes by CO bond ruptures, yielding a stoichiometric amount of acetone (2 mol per mole of ACDP decomposed). The results are compared with those obtained for the above diperoxide thermolysis in other solvents. © 2004 Wiley Periodicals, Inc. Int J Chem Kinet 36: 302–307, 2004
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.