Abstract

The kinetics and mechanism of the nucleophilic substitution reactions of diphenyl phosphinic (1) and thiophosphinic (2) chlorides with substituted X-pyridines are investigated kinetically in acetonitrile at 35.0 and 55.0 oC, respectively. A concerted mechanism with backside nucleophilic attack is proposed for the pyridinolysis of 1, on the basis of the linear Bronsted plot with the βX value of 0.68. In the case of the pyridinolysis of 2, the Hammett and Bronsted plots are biphasic concave upwards with the break point at 3- phenyl pyridine. These results indicate a change in mechanism from a concerted SN2(P) process with direct backside nucleophilic attack for less basic nucleophiles (X = 3-CN-3-Ph) to a stepwise process with frontside attack for more basic nucleophiles (X = 4-MeO-3-Ph). Apparent secondary inverse kinetic isotope effects with deuterated pyridine (C5D5N), kH/kD < 1, are observed for the pyridinolysis of 1 and 2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call