Abstract

The kinetics of oxidative dehydrogenation of isobutane in the presence of atmospheric oxygen on manganese molybdate has been studied. The experiments have been carried out in a circulation flow reactor at 470–530°C. The form of kinetic equations and the mechanism of the formation of isobutene, carbon oxides, and cracking products on manganese molybdate are similar to those found previously for the same reaction on cobalt and nickel molybdates. The highest yields of isobutene and propene (isobutane cracking products) are achieved on Co0.95MoO4. The mechanism of the process has been investigated by the unsteady-state response method. Manganese molybdate contains the largest amount of reactive oxygen, whereas nickel molybdate contains the smallest amount of reactive oxygen. The earlier conclusion that molybdate lattice oxygen and chemisorbed oxygen play the main role in the formation of iso-C4H8 and in deep oxidation processes, respectively, is confirmed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.