Abstract

The reversible complexation of the pentaammine(pyridine-2-carboxylato)cobalt(III) ion [N5Co{O2C-(2)-C5H4 N}]2+ [N5=5HN3 and tetraethylenepentaammine (tetren)] with NiIIL(OH2)6-n [L=H2O (N5=tetren); L=bipy, ida2- (iminodiacetate) and nta3- (nitrilotriacetate), N5=5NH3 and tetren] has been investigated by the stopped-flow technique at 20-40 degC, and I= 0.3mol dm-3. At 25degC, the rate constants, kf(dm3 mol-1s-1), DeltaH(kJmol-1) and DeltaS(JK-1mol-1) for the formation of the ternary complexes [(tetren)-CoIII{O2C-(2)-C5H4N} NiIIL(OH2)6-n] are as follows: L=H2O, 530+9, 53+2, -15+7, respectively; L=bipy, 640+30, 37+3, -65+9; L=ida2-, 3900+100, 47+3, -18+11; L=nta3-, 10200+400, 49+1, −2+2. Nickel(II), in the ternary complexes, is chelated by the free pyridyl-N and the carboxylato moiety of the pyridine-2-carboxylate bound to the cobalt centre. The formation rate constant (kf) and the associated activation parameters are relatively insensitive to the N5 moieties for a given ligand L; kf increased in the order: Ni(OH2)62+Ni(bipy)(OH2)42+ Ni(ida)(OH2)3 (nta)(OH2)2-. Data analysis indicated that the mechanism shifted from the dissociative interchange (Id) to the chelation-controlled one, with the decrease of the available sites for coordination in NiIIL(OH2)6−n. The rate constants (kr) for the dissociation of [N5CoIII{O2C-(2)-C5 H4N}NiIIL(OH2) 6-(n+2)] to the parent reactants indicated steric acceleration [krL(5NH3) kr Ni(ida) >krNi(bipy)2+ for both pentaammine substrates. The chelate ring opening rate constants for the ternary complexes were estimated, from which it was apparent that the tetren envelope of cobalt(III) exerted relatively greater steric pressure as compared with 5NH3 in favouring opening up of the chelate ring.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.