Abstract
Abstract The kinetic study of the hydroformylation of styrene catalysed by the rhodium/1,3,5-triphenyl-1 H -phosphole (TPP) system has been facilitated by the fact that a catalytic system having two TPP ligands per Rh atom is maintained all along the catalytic cycle and no dissociation of a TPP ligand has to be considered during this cycle. This has allowed us to propose a model of mechanism with an association complex between the styrene and the unsaturated HRh(CO)(TPP) 2 species. An analytical equation of the reaction rate has been established which acceptably characterises the behaviour of the reaction rate according to the concentration of the various species. This study reveals that the selectivity between linear and branched alkyl-rhodium is under thermodynamic control and the reversibility of the transformation of the alkyl into acyl-rhodium isomers has not clearly been established but suggested by the observations. An inhibiting effect of the produced aldehydes, through complexation with rhodium has also been put in evidence. This study emphasizes also the complex role of the CO and H 2 partial pressures on the rate of reaction. A single catalytic cycle, only differentiated by the formation of linear or branched aldehydes, based on these observations and consistent with the kinetic equation is proposed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.