Abstract

A crucial point in the biosynthesis of cyclo (His-Pro), an endogenous and biologically active cyclic dipeptide, is the spontaneous cyclization of its precursor L-histidyl-L-prolineamide (His-ProNH2). In this study the kinetics and mechanism of the cyclization process has been investigated. His-ProNH2 was found to be converted quantitatively to cyclo(His-Pro) in aqueous solution at pH 2-10 and 37 degrees C, the rate of cyclization being maximal at pH 6-7. Buffer substances such as phosphate (pH 6-7.4) were found to catalyse the cyclization. The bell-shaped pH-rate profile observed was accounted for by assuming spontaneous and specific acid- and base-catalysed reactions of the His-ProNH2 species in which the imidazole group is protonated and the primary amino group unprotonated. The much more rapid rate of cyclization of His-ProNH2 (t1/2 of 140 min at pH 6-7 and 37 degrees C) relative to other proline-containing di- and tripeptides studied was suggested to be due to an intramolecular general acid catalytic effect by the protonated imidazole group. In the presence of human plasma enzymatic hydrolysis of His-ProNH2 competed with the cyclization and predominated greatly at 80% plasma concentration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.