Abstract

From electrochemical techniques (cyclic voltammetry, potential steps, and EIS), XRD, and SEM-EDX, the kinetics and mechanism of anodic film formation applying anodic potential steps on steel immersed in sour acid media was determined. It was found, from a thermodynamic analysis, based on equilibrium phase diagrams of the system considered in this work, that iron oxidation may produce different new solid phases, depending on the applied potential, the first being the iron oxidation associated with formation of FeS((c)) species, which in turn can be reoxidized to FeS(2(c)) or even to Fe(2)O(3(c)) at higher potential values. From analysis of the corresponding experimental potentiostatic current density transients, it was concluded that the electrochemical anodic film formation involves an E(1)CE(2) mechanism, whereby the first of the two simultaneous processes were the Fe electrochemical oxidation (E(1)) followed by FeS precipitation (C) that occurs by 3D nucleation and growth limited by mass transfer reaction and FeS oxidation (E(2)) forming a mix of different stoichiometry iron sulphides and oxides. From EIS measurements, it was revealed that the anodic film's charge transfer resistance diminishes as the potential applied for its formation becomes more anodic, thus behaving poorly against corrosion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.