Abstract

The kinetics and mechanism of ruthenium(III) catalyzed oxidation of tetrahydrofurfuryl alcohol (THFA) by cerium(IV) in sulfuric acid media have been investigated spectrophotometrically in the temperature range 298–313 K. It is found that the reaction is first-order with respect to CeIV, and exhibits a positive fractional order with respect to THFA and RuIII. The pseudo first-order ([THFA]≫[CeIV]≫[RuIII]) rate constant kobs decreases with the increase of [HSO4−]. Under the protection of nitrogen, the reaction system can initiate polymerization of acrylonitrile, indicating the generation of free radicals. On the basis of the experimental results, a reasonable mechanism has been proposed and the rate equations derived from the mechanism can explain all the experimental results. From the dependence of kobs on the concentration of HSO4−, \({{\rm Ce}({\rm SO}_{4})_{2}}\) has been found as the kinetically active species. Furthermore, the rate constants of the rate determining step together with the activation parameters were evaluated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.