Abstract

AbstractBronsted acid catalyzed oxidation of certain sugar alcohols (polyols) has been studied by quinolinium dichromate (QDC) using aqueous sulfuric, perchloric, and hydrochloric acids at different temperatures. At constant acidity, reaction kinetics revealed the second‐order kinetics with a first order in [Alcohol] and [QDC]. Zucker‐Hammett, Bunnett, and Bunnett‐Olsen criteria were used to analyze acid‐dependent rate accelerations. Bunnett‐Olsen plots of (log k + Hν) versus (Hν + log [H+]), and (log k) versus (Hν + log [H+]) afforded slope values (ϕ and ϕ*, respectively) > 0.47, suggesting that a water molecule acts as a prton transfer agent in the slow step of the mechanism in the oxidation of alcohols by QDC in the presence of aqueous sulfuric, perchloric, and hydrochloric acids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.