Abstract

Oxidation of the chromium(III)-l-arginine complex [CrIII(L)2(H2O)2]+ by periodate has been investigated. In aqueous solutions, [CrIII(L)2(H2O)2]+ is oxidized by IO−4 according to the rate law: d[CrVI]/dt=k2K5[CrIII]T [IVII]T/1 +([H+]/K1)+K5[IVII]T where k2 is the rate constant for the electron transfer process, K1 the equilibrium constant for the dissociation of [CrIII(L)2- (H2O)2]+ to [CrIII(L)2(H2O)(OH)]+H+, and K5 the pre-equilibrium formation constant. Values of k2= 4.02×10−3s−1, K1=5.60×10−4m and K5=171m−1 were obtained at 30°C and I=0.2m. Thermodynamic activation parameters were calculated. It is proposed that electron transfer proceeds through an inner-sphere mechanism via coordination of IO−4 to chromium(III).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.