Abstract
Water is essential for living organisms, with our bodies containing a significant 60% water content. Water pollution resulting from harmful industrial practices and human activities poses a significant danger to humanity. The release of organic and inorganic substances, pathogens, herbicides, pesticides, drugs, heavy metals, and visible pollutants into water bodies leads to a decline in water quality, causing a reduction in oxygen levels. The toxicity and bioaccumulative properties of heavy metals make them prominent environmental pollutants. Researchers are particularly interested in the adsorption method due to its exceptional ability to eliminate toxic metals, wherein adsorbates bind to the solid surface of adsorbents through physicochemical interactions. In this study, TiO2 nanoparticles were synthesized via solgel method. These nanoparticles were used to remove lead from contaminated water. Various techniques, including XRD and EDX were employed to analyze the nanoparticle synthesis. The Atomic Absorption Spectrophotometer was used to measure the removal of Lead before and after adsorption. Key variables like pH, dosage, and contact time were carefully controlled in the experiments. To ensure the findings, statistical analysis were applied to examine all collected data. The ultimate aim was to enhance the efficiency of heavy metal removal and offer valuable insights into the use of chemically synthesized TiO2 nanoparticles for water purification purposes. This research has the potential to contribute to safer water resources and improved environmental management.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.