Abstract
Iron transport across the periplasmic space to the cytoplasmic membrane of certain Gram-negative bacteria is mediated by a ferric binding protein (Fbp). This requires Fe(3+) loading of Fbp at the inner leaflet of the outer membrane. A synergistic anion is required for tight Fe(3+) sequestration by Fbp. Although phosphate fills this role in the protein isolated from bacterial cell lysates, nitrilotriacetate anion (NTA) can also satisfy this requirement in vitro. Here, we report the kinetics and mechanism of Fe(3+) loading of Fbp from Fe(NTA)(aq) in the presence of phosphate at pH 6.5. The reaction proceeds in four kinetically distinguishable steps to produce Fe(3+)Fbp(PO(4)) as a final product. The first three steps exhibit half-lives ranging from ca. 20 ms to 0.5 min, depending on the concentrations, and produce Fe(3+)Fbp(NTA) as an intermediate product of significant stability. The rate for the first step is accelerated with an increasing phosphate concentration, while that of the third step is retarded by phosphate. Conversion of Fe(3+)Fbp(NTA) to Fe(3+)Fbp(PO(4)) in the fourth step is a slow process (half-life approximately 2 h) and is facilitated by free phosphate. A mechanism for the Fe(3+)-loading process is proposed in which the synergistic anions, phosphate and NTA, play key roles. These data suggest that not only is a synergistic anion required for tight Fe(3+) sequestration by Fbp, but also the synergistic anion plays a critical role in the process of inserting Fe(3+) into the Fbp binding site.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.