Abstract

It has been shown that guanine-rich DNA can fold into a G-quadruplex with certain metal cations. The spectral characteristics, thermostability, and kinetics for the formation of a Pb(2+)-driven G-quadruplex of thrombin-binding aptamer (TBA) were measured in the current work using a combination of ultraviolet (UV) and circular dichroism (CD) spectroscopy along with stopped-flow technique. CD spectra demonstrated that TBA could fold into a unique G-quadruplex with a strong positive peak at 312 nm. Analysis of the titration data reveals that the binding stoichiometry is 1:1 for the titration of TBA with Pb(NO(3))(2), which is in accordance with the localization of the Pb(2+) ion between the adjacent G-quartets. Thermal denaturation profiles indicate that the Pb(2+)-induced intramolecular G-quadruplex is more stable than those driven by Na(+) or K(+) ions. Kinetic studies suggest that the Pb(2+)-induced folding G-quadruplex of TBA probably proceeds through the rapid formation of an intermediate Pb(2+)-TBA complex, which then isomerizes to the fully folded structure. Conformational changes transpire after the addition of Pb(NO(3))(2) to the Na(+)- or K(+)-induced G-quadruplexes, which may be attributed to the replacement of Na(+) or K(+) ions by Pb(2+) ions and the generation of a more compact structure of the Pb(2+)-TBA structure. The relaxation time, τ, of folding the G-quadruplex is reduced from 1.05 s in the presence of Pb(2+) ions alone to 0.34 s under the cooperation of initially added Na(+) ions, while τ is increased to 8.33 s under the competition of initially added K(+) ions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.