Abstract

Reactions of cellobiose in subcritical and supercritical water were studied. Kinetic study on the cellobiose decomposition clarified that the contribution of hydrolysis to the overall cellobiose decomposition rate decreased and that of retro-aldol condensation greatly increased with decreasing pressure in near-critical and supercritical water. It was found that the rate of retro-aldol condensation was expressed as a first-order reaction rate law and the kinetic parameters of this reaction were estimated. With regards to hydrolysis of cellobiose, it was indicated that the rate of hydrolysis was a second-order reaction (first-order reaction of the water concentration) and its activation energy and preexponential factor were determined. Mechanisms of these reactions were discussed based on the experimental findings. It was suggested that hydrolysis of cellobiose mainly took place by the nucleophilic attack of the oxygen atom of the water molecule or by the attack of a proton ion dissociated from supercritica...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call