Abstract

A mechanism model has been presented that can describe most known kinetic properties of carbonic anhydrase isoenzymes I, II, and III. The essential features of this model include: Nucleophilic attack of metal-bound OH- on CO2 to form metal-bound HCO-3. Formation of metal-bound OH- from metal-bound H2O. In isoenzyme II, and probably also in isoenzyme I, this reaction step involves an intramolecular transfer of H+ between the metal site and a titratable histidine residue via a number of hydrogen-bonded H2O molecules. In isoenzyme II, this step limits the maximal rate of catalysis. Also in isoenzyme III, the H2O-splitting step may be rate limiting, but since this isoenzyme has no titratable active-site histidine, H+ transfer may take place directly with components of the solvent. In isoenzymes I and II, rapid H+ transfer between active site and solution proceeds in a reaction between the titratable histidine residue and buffer molecules. The model can also rationalize a variety of observed inhibition patterns.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call