Abstract

4-Methylbenzylidene camphor (4-MBC), a widely used ultraviolet (UV) filter detected in various aquatic environments, has been shown to evoke estrogenic activity. In this study, the use of UV light-activated persulfate for 4-MBC degradation is evaluated for the first time. Our results showed that the combination of UV and persulfate (UV/persulfate) can significantly remove 4-MBC, with a pseudo-first-order rate constant (kobs) of 0.1349min-1 under the conditions of [4-MBC]0= 0.4μM, [persulfate]0= 12.6μM, and initial pH = 7. The kobs and persulfate dose exhibited a linear proportional relationship in the persulfate dose range of 4.2-42μM. The kobs remained similar at pH5 and pH7 but significantly decreased at pH9. A radical scavenging test indicated that SO4-• was the dominant species in 4-MBC degradation; the second-order rate constant of SO4-• with 4-MBC was calculated to be (2.82 ± 0.05) × 109M-1s-1. During the UV/persulfate reaction, 4-MBC was continuously degraded, while SO4-• was gradually converted to SO42-. 4-MBC degradation involved the hydroxylation and demethylation pathways, resulting in the generation of transformation byproducts P1 (m/z 271) and P2 (m/z 243), respectively. The Microtox® acute toxicity test (Vibrio fischeri) showed increasing toxicity during the UV/persulfate degradation of 4-MBC. The 4-MBC degradation rate was markedly lower in outdoor swimming pool water than in deionized water. Graphical abstract.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call