Abstract

Biomass burning emits large amounts of phenols, which can partition into cloud/fog drops and aerosol liquid water (ALW) and react to form aqueous secondary organic aerosol (aqSOA). Triplet excited states of organic compounds (3C*) are likely oxidants, but there are no rate constants with highly substituted phenols that have high Henry's law constants (KH) and are likely important in ALW. To address this gap, we investigated the kinetics of six highly substituted phenols with the triplet excited state of 3,4-dimethoxybenzaldehyde. Second-order rate constants at pH 2 are all fast, (2.6-4.6) × 109 M-1 s-1, while values at pH 5 are 2-5 times smaller. Rate constants are reasonably described by a quantitative structure-activity relationship with phenol oxidation potentials, allowing rate constants of other phenols to be predicted. Triplet-phenol kinetics are unaffected by ammonium sulfate, sodium chloride, galactose (a biomass-burning sugar), or Fe(III). In contrast, ammonium nitrate increases the rate of phenol loss by making hydroxyl radicals, while Cu(II) inhibits phenol decay. Mass yields of aqueous SOA from triplet reactions are large and range from 59 to 99%. Calculations using our data along with previous oxidant measurements indicate that phenols with high KH can be an important source of aqSOA in ALW, with 3C* typically the dominant oxidant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.