Abstract

A comparative study of oxygen adsorption on Pt(111) and Pt(112) has been performed using temperature programmed desorption, isothermal desorption, Auger spectroscopy, LEED and isotopic measurements. On Pt(112) three molecular adsorption states ( α 1, α 2, α 3) and two atomic adsorption states ( β 1, β 2) have been found. The β 2-state exhibits repulsive lateral interaction whereas the β 1-state shows attractive interaction. The adsorption kinetics at T ad = 87 K involves a precursor state. For Pt(112) at 87 K, the sticking coefficient is 0.97 at zero coverage and remains constant in the low coverage regime. On Pt(111) at 87 K, the sticking coeffient increases with increasing oxygen coverage at low coverage, with s 0 = 0.29. This suggests that empty Pt sites near an O 2-covered Pt site experience an enhanced reactivity with O 2. T ad = 300 K the adsorption kinetics are governed by direct dissociative adsorption with an activation barrier of ≈2 kal/mol on Pt(111), yielding an initial sticking probability of 0.05, whereas a complicated adsorption behavior is obtained for Pt(112) with s 0 = 0.53. The conversion of molecular oxygen into atomic oxygen is discussed as well as the influence of subsurface oxygen and “clean-off” effects on the adsorption kinetics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.