Abstract

Kinetic and mechanistic studies of the oxidation of mandelic acid and nine monosubstituted mandelic acids by benzimidazolium dichromate (BIDC) in dimethyl sulfoxide are discussed with an emphasis on correlation of structure and reactivity. The reactions were of first order with respect to BIDC. However, Michaelis-Menten type kinetics were observed with respect to hydroxy acids. The reactions are catalysed by protons. The deuterium isotope effect for the oxidation of mandelic acid ( kH/ kD= 5.91 at 298 K) indicated an α-C-H bond cleavage in the rate-determining step. An analysis of the solvent effect showed that the role of cationsolvation is major. The reaction showed an excellent correlation with the Hammett σ values, the reaction constant being negative. Based on the kinetic data, analysis of the solvent effect and results of structure-reactivity correlation along with some non-kinetic parameters, a mechanism involving rate-determining oxidative decomposition of the complex through hydride-ion transfer via a cyclic transition state to give the corresponding oxoacid is suggested.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.