Abstract

The sorption of four endocrine disruptors, bisphenol A (BPA), estrone (E1), 17β-estradiol (E2), and 17α-ethinylestradiol (EE2) in tropical sediment samples was studied in batch mode under different conditions of pH, time, and sediment amount. Data obtained from sorption experiments using the endocrine disruptors (EDs) and sediments containing different amounts of organic matter showed that there was a greater interaction between the EDs and organic matter (OM) present in the sediment, particularly at lower pH values. The pseudosecond order kinetics model successfully explained the interaction between the EDs and the sediment samples. The theoretical and experimentally obtained qe values were similar, and k values were smaller for higher SOM contents. The kF values, obtained from the Freundlich isotherms, varied in the ranges 4.2–7.4 × 10−2 (higher OM sediment sample, S2) and 1.7 × 10−3–3.1 × 10−2 (lower OM sediment sample, S1), the latter case indicating an interaction with the sediment that increased in the order: EE2 > > E2 > E1 > BPA. These results demonstrate that the availability of endocrine disruptors may be directly related to the presence of organic material in sediment samples. Studies of this kind provide an important means of understanding the mobility, transport, and/or reactivity of this type of emergent contaminant in aquatic systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call