Abstract
Release of dye-containing wastewater into ecosystems has posed serious risks to the environment and aquatic life because of toxicity and adverse effects on the water bodies. Malachite green is a basic dye that has very wide industrial applications, especially in the aquaculture industry. This study was carried out in order to remove the malachite green from aqueous solutions by thiolated graphene oxide in batch system. In the present work, the effects of experimental parameters such as adsorbent dosage, solution pH, initial dye concentration, thermodynamics and adsorption mechanism were comprehensively studied in batch system. In order to characterize the physical and chemical properties of the synthetized nanostructure and also to confirm the functionalization steps, different analyses including SEM and FT-IR were used. Batch studies showed that the experimental data fitted logically to applied isotherms, namely Langmuir (R2=0.991) and Freundlich (R2=0.983) models. Kinetic calculations confirmed that malachite green adsorption was described more accurately by pseudo-second order model compared to the pseudo-first order model. The study showed that thiolated graphene oxide is an effective adsorbent for malachite green removal from aqueous solution. Under controlled reaction conditions, Gibbs free energy (ΔG) varied from -1.46 to -3.25 kJ/mol, besides, the resulting ΔH° and ΔS° values were obtained 0.059 kJ/mol and 15.67 kJ/mol.K, respectively. So, it can be considered that the adsorption of malachite green onto the thiolated graphene oxide nanostructure is a physico-chemical and spontaneous process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.