Abstract
A central topic in Hele-Shaw flow research is the inclusion of physical effects on the interface between fluids. In this context, the addition of surface tension restrains the emergence of high interfacial curvatures, while consideration of kinetic undercooling effects inhibits the occurrence of high interfacial velocities. By connecting kinetic undercooling to the action of the dynamic contact angle, we show in a quantitative manner that the kinetic undercooling contribution varies as a linear function of the normal velocity at the interface. A perturbative weakly nonlinear analysis is employed to extract valuable information about the influence of kinetic undercooling on the shape of the emerging fingered structures. Under radial Hele-Shaw flow, it is found that kinetic undercooling delays, but does not suppress, the development of finger tip-broadening and finger tip-splitting phenomena. In addition, our results indicate that kinetic undercooling plays a key role in determining the appearance of tip splitting in rectangular Hele-Shaw geometry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physical review. E, Statistical, nonlinear, and soft matter physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.