Abstract

The kinetics of ferrite growth in Fe-0.1C-1.5Mn-0.94Si (mass pct) quaternary steel is investigated through the characterization of isothermal growth behavior, the thermodynamic prediction of kinetic boundary and the diffusional growth simulations using DICTRA. The change in microstructural evolution from slow growth to fast one is consistent with the calculated change of interface condition from the partitioning local equilibrium (PLE) to the negligible partitioning local equilibrium (NPLE). Compared with the DICTRA simulation, the observed growth kinetics of ferrite are between the calculated ones assuming local equilibrium (LE) and paraequilibrium (PE) criterions. At temperatures below the PLE/NPLE kinetic boundary, the observed growth behavior can be reasonably described by kinetic transition from PE to NPLE condition as isothermal time elapses, taking into account the critical velocity of interface at which trans-interface diffusion of subsitutional element permits the transition from PE to NPLE growth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.