Abstract

BackgroundThe filamentous fungus Trichoderma reesei is the main industrial cellulolytic enzyme producer. Several strains have been developed in the past using random mutagenesis, and despite impressive performance enhancements, the pressure for low-cost cellulases has stimulated continuous research in the field. In this context, comparative study of the lower and higher producer strains obtained through random mutagenesis using systems biology tools (genome and transcriptome sequencing) can shed light on the mechanisms of cellulase production and help identify genes linked to performance. Previously, our group published comparative genome sequencing of the lower and higher producer strains NG 14 and RUT C30. In this follow-up work, we examine how these mutations affect phenotype as regards the transcriptome and cultivation behaviour.ResultsWe performed kinetic transcriptome analysis of the NG 14 and RUT C30 strains of early enzyme production induced by lactose using bioreactor cultivations close to an industrial cultivation regime. RUT C30 exhibited both earlier onset of protein production (3 h) and higher steady-state productivity. A rather small number of genes compared to previous studies were regulated (568), most of them being specific to the NG 14 strain (319). Clustering analysis highlighted similar behaviour for some functional categories and allowed us to distinguish between induction-related genes and productivity-related genes. Cross-comparison of our transcriptome data with previously identified mutations revealed that most genes from our dataset have not been mutated. Interestingly, the few mutated genes belong to the same clusters, suggesting that these clusters contain genes playing a role in strain performance.ConclusionsThis is the first kinetic analysis of a transcriptomic study carried out under conditions approaching industrial ones with two related strains of T. reesei showing distinctive cultivation behaviour. Our study sheds some light on some of the events occurring in these strains following induction by lactose. The fact that few regulated genes have been affected by mutagenesis suggests that the induction mechanism is essentially intact compared to that for the wild-type isolate QM6a and might be engineered for further improvement of T. reesei. Genes from two specific clusters might be potential targets for such genetic engineering.Electronic supplementary materialThe online version of this article (doi:10.1186/s13068-014-0173-z) contains supplementary material, which is available to authorized users.

Highlights

  • The filamentous fungus Trichoderma reesei is the main industrial cellulolytic enzyme producer

  • The main drawbacks of random mutagenesis are well known: accumulation of deleterious mutations leading to evolutionary dead ends or unstable strains, limited or nonexistent ability to select for synergistic mutations, due to the low probability that the two or more suitable mutations appear in a single clone, and few or no clues regarding the underlying cellular mechanisms involved [1]

  • NG 14 and RUT C30 strains? protein production in an industrial cultivation regime In order to study the early phase of induction by lactose of T. reesei, we cultivated in duplicate strains RUT C30 and NG 14 in a bioreactor by following a previously described protocol that mimics an industrial process [19,29]

Read more

Summary

Introduction

The filamentous fungus Trichoderma reesei is the main industrial cellulolytic enzyme producer. The main drawbacks of random mutagenesis are well known: accumulation of deleterious mutations leading to evolutionary dead ends or unstable strains, limited or nonexistent ability to select for synergistic mutations, due to the low probability that the two or more suitable mutations appear in a single clone, and few or no clues regarding the underlying cellular mechanisms involved [1]. This empirical approach has been very successful and remains broadly used even more than 25 years after the advent of recombination technologies. Despite those high production titres, the specific productivity (g/g.h-1) of the strains remains relatively low and there is still a need for strains with higher productivities

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call