Abstract

We address the nature of spin transport in the integrable XXZ spin chain, focusing on the isotropic Heisenberg limit. We calculate the diffusion constant using a kinetic picture based on generalized hydrodynamics combined with Gaussian fluctuations: we find that it diverges, and show that a self-consistent treatment of this divergence gives superdiffusion, with an effective time-dependent diffusion constant that scales as D(t)∼t^{1/3}. This exponent had previously been observed in large-scale numerical simulations, but had not been theoretically explained. We briefly discuss XXZ models with easy-axis anisotropy Δ>1. Our method gives closed-form expressions for the diffusion constant D in the infinite-temperature limit for all Δ>1. We find that D saturates at large anisotropy, and diverges as the Heisenberg limit is approached, as D∼(Δ-1)^{-1/2}.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.