Abstract
The long-term dynamics of long-range interacting N-body systems can generically be described by the Balescu-Lenard kinetic equation. However, for one-dimensional homogeneous systems, this collision operator exactly vanishes by symmetry. These systems undergo a kinetic blocking, and cannot relax as a whole under 1/N resonant effects. As a result, these systems can only relax under 1/N^{2} effects, and their relaxation is drastically slowed down. In the context of the homogeneous Hamiltonian mean field model, we present a closed and explicit kinetic equation describing self-consistently the very long-term evolution of such systems, in the limit where collective effects can be neglected, i.e., for dynamically hot initial conditions. We show in particular how that kinetic equation satisfies an H theorem that guarantees the unavoidable relaxation to the Boltzmann equilibrium distribution. Finally, we illustrate how that kinetic equation quantitatively matches with the measurements from direct N-body simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.