Abstract

Dust charge fluctuation effect on the parametric decay of lower hybrid wave instability by relativistic runaway electrons is studied in a tokamak using kinetic treatment. Parametric upconversion of lower hybrid pump waves into relativistic runaway electron mode and upper sideband mode is described. A ponderomotive force is exerted on the runaway electrons by lower hybrid pump wave possessing large amplitude and upper sideband wave, which drives the runaway electron mode. The coupling of the oscillatory velocity of electrons with density perturbations produces nonlinear density perturbations on the upper sideband frequency. As a result, runaway generation is enhanced by a lower hybrid wave and the growth rate of the instability is measured as the square of the amplitude of the pump wave. Moreover, the presence of dust charge fluctuations and their number density in the tokamak have an appreciable effect on the growth rate of lower hybrid wave instabilities, which in turn affects the actual performance of the ITER due to the potential safety and operational issues.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.