Abstract

The two-particle correlations in a turbulent plasma are analyzed on a quite general basis by using the modern methods of non-equilibrium statistical mechanics. It is shown that the binary correlations can be split (in a time in- variant way) into a part which decays quickly by ballistic motion, and a long- living part: ‘the natural correlations’. The latter are continuously regenerated from the one-particle distribution function by the internal interactions, even in the absence of true collisions. The general theory can be made operational by using approximation schemes, among which the ‘RQL2’ method, which generalizes the renormalized quasi-linear approximation, leads to results comparable to, but more general than, those developed by previous authors. The explicit relation of the long-living enhanced correlations to the concept of ‘clumps’ will be developed in a forthcoming paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.