Abstract

Kinetic theory has been employed to investigate the magnetized plasma-sheath structure and its characteristics in the presence of more than one species of negatively charged particles: hot electrons, cold electrons, and negative ions. The cold electrons and negative ions are considered to obey a Maxwellian distribution, whereas the hot electrons follow a truncated Maxwellian distribution. The Bohm sheath condition has been extended for the case of more than one species of negatively charged particles, in which the concentration of hot electrons has a crucial role in achieving the Bohm velocity. The thermal motion of hot electrons is much higher compared to cold electrons and negative ions, such that the variation of hot electron concentrations and the temperature ratio of hot to cold electrons play a key role in the determination of the plasma-sheath parameters: particle densities, electrostatic potential, the flow of positive ions towards the wall, and sheath thickness. We have estimated the deviation of the resultant drift velocity of positive ions on the plane perpendicular to the wall from the parallel component at the presheath–sheath interface. It is found that the deviation between the two velocity components increases with an increase in the obliqueness of the magnetic field. Furthermore, the results obtained from the kinetic trajectory simulation model are compared with the results obtained using a fluid model; the results are qualitatively similar, although the potential varies by less than 4% in terms of the magnitude at the wall.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call