Abstract
The turbulent fluidization regime is characterized by the co-existence of a dense, bottom region and a dilute, top bed. A kinetic theory based CFD code with a drag corrected for clusters captured the basic features of this flow regime: the dilute and dense regions, high dispersion coefficients and a strong anisotropy. The computed energy spectrum captures the observed gravity wave and the Kolmogorov - 5 / 3 law at high frequencies. The computed turbulent kinetic energy is close to the measurements for FCC particles. The CFD simulations compared reasonably well with the measured core-annular flow experiments at very high solid fluxes. The computed granular temperatures, solids pressures, FCC viscosities and frequencies of oscillations were close to measurements reported in the literature. The computations suggest that unlike for the flow of group B particles, the oscillations for the FCC particles in the center of the riser are primarily due to the oscillations of clusters and not due to oscillations of individual particles. Hence mixing is not on the level of individual particles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.