Abstract

In this study, the pyrolysis behaviour of nonmetal fraction of waste printed circuit boards (NMF-WPCBs) was studied based on five model-free methods and distributed activation energy model (DAEM). The possible decomposition mechanism was further probed using the Criado method. Thermogravimetric analysis indicated that the NMF-WPCBs pyrolysis process could be divided into three stages with temperatures of 37-330°C, 330-380°C and 380-1000°C. The mass loss at different heating rate was determined as 26.85-29.98%, 13.47-24.21% and 20.43-23.36% for these stages, respectively. The activation energy (Eα) from various model-free methods first increased with degree of conversion (α) increasing from 0.05 to 0.275, and then decreased beyond this range. The coefficient (R) from the Flynn-Wall-Ozawa (FWO) method was higher, and the resulting Eα fell into the range of 214.947-565.660 kJ mol-1. For the DAEM method, the average Eα value was determined as 337.044 kJ mol-1, comparable with 329.664 kJ mol-1 from the FWO method. The thermal decomposition kinetics of NMF-WPCBs could be better described by the second-order reaction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call