Abstract

This study explored the direct esterification of palmitic acid and ethanol using a deep eutectic solvent (DES) as catalyst to produce biodiesel. Three novel deep eutectic solvents (DTAC-PTSA, DTAC-2PTSA, DTAC-3PTSA) were successfully prepared by mixing dodecyl trimethyl ammonium chloride (DTAC) and p-toluenesulfonic acid monohydrate (PTSA) in a molar ratio of 1: z (z=1, 2, 3). After testing, DTAC-3PTSA was found to have the best catalytic performance among the three types of DESs and was therefore selected as the catalyst for subsequent experiments. The effects of agitation speed, ethanol to palmitic acid molar ratio (α), temperature and catalyst dosage were studied by investigating the change of palmitic acid conversion rate with time under different conditions, respectively. Then, the pseudo-homogeneous (PH) model was utilized to describe the kinetic behavior of this reaction between 328.15–348.15 K and it was found to work well for the experimental data obtained. Moreover, the catalytic performance of DTAC-3PTSA was detected to have no significant change in the cycle test. Therefore, DTAC-3PTSA can be considered as a substitute for traditional catalysts to produce biodiesel and the kinetic data obtained here can be used for further up-scaling study.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.