Abstract

Experimental and theoretical studies have been carried out to investigate the effects of slag on the alloying elements in ingots during the electroslag remelting (ESR) process with a focus on developing a mass-transfer model to understand the mechanism of slag-metal reaction. Stainless steel 1Cr21Ni5Ti was used as the electrode and remelted with two different kinds of slags using a 50-kg ESR furnace. The contents of sulfur, aluminum, titanium and silicon along the axial direction of the produced ingots were analyzed. On the basis of the penetration and film theories, the theoretical model developed in this work elucidates the kinetics of the slag-metal reaction revealing the mechanism of alloying element transfer during the ESR process. The calculation results obtained from the model agree well with the experimental results. The model indicates that the resultant [O] coming from the desulfurization reaction of (O2−) + [S] = (S2−) + [O] causes the oxidation of alloying elements in steel by [M] + [O] = (MO). The distribution ratio of sulfur LS decreases with the increase of slag temperature in the first slag-temperature-rising period, and the concentration of sulfur in the ingot at the beginning of the ESR process is lower than in the rest of the process because of the combination of the large distribution ratio of sulfur LS and excellent kinetic conditions. The concentration of aluminum along the height of the ingot has an increasing trend in the first slag-temperature-rising period, while it has a decreasing trend in the rest of the process. Two methods can solve this problem: one is starting up the ESR furnace by high temperature molten slag technology and the other is continually adding extra titania into the molten slag in the first slag-temperature-rising period.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call